Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2015, Vol. 22 ›› Issue (6): 275-282.DOI: 10.1016/S1672-6308(14)60301-2

• • 上一篇    下一篇

  • 收稿日期:2015-04-20 接受日期:2015-06-29 出版日期:2015-06-06 发布日期:2015-09-15

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2015, 22(6): 275-282.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/S1672-6308(14)60301-2

               http://www.ricesci.org/CN/Y2015/V22/I6/275

图/表 5

Fig. 1. PCR amplification of OsNHX1 in transgenic and wild-type Nipponbare.(M, Marker; N1, Purified wild-type Nipponbare; N2, Unpurified wild-type Nipponbare.)

Fig. 1. PCR amplification of OsNHX1 in transgenic and wild-type Nipponbare.(M, Marker; N1, Purified wild-type Nipponbare; N2, Unpurified wild-type Nipponbare.)

Fig. 2. Effect of salinity stress on maximal quantum yield of PSII (Photosystem II) for both transgenic and wild-type Nipponbare.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

Fig. 2. Effect of salinity stress on maximal quantum yield of PSII (Photosystem II) for both transgenic and wild-type Nipponbare.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

Fig. 3. Chlorophyll content meter of transgenic and wild-type Nipponbare under varying salinity regimes.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

Fig. 3. Chlorophyll content meter of transgenic and wild-type Nipponbare under varying salinity regimes.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

Fig. 4. Transpiration rate for both transgenic and wild-type Nipponbare under different salinity regimes.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

Fig. 4. Transpiration rate for both transgenic and wild-type Nipponbare under different salinity regimes.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

Fig. 5. Shoot dry weight for both transgenic and wild-type Nipponbare under different salinity regimes.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

Fig. 5. Shoot dry weight for both transgenic and wild-type Nipponbare under different salinity regimes.(N, Wild-type Nipponbare; TN, Transgenic Nipponbare; 0, 50, 150 and 300 refer to 0, 50, 150 and 300 mmol/L salinity regimes, respectively.)

参考文献 46

[1] Andriolo J L, Luz G L D, Witter M H, Godoi R D S, Barros G T, Bortolotto O C.2005. Growth and yield of lettuce plants under salinity.Hort Bras, 23(4): 931-934.
[2] Aslam M, Qureshi R H, Ahmed N.1993. A rapid screening technique for salt tolerance in rice (Oryza sativa L.).Plant Soil, 150(1): 99-107.
[3] Bao A K, Wang Y W, Xi J J, Liu C, Zhang J L, Wang S M.2014. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation.Funct Plant Biol, 41(2): 203-214.
[4] Bjorkman O, Demmig B.1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.Planta, 170: 489-504.
[5] Blumwald E, Aharon G S, Apse M P.2000. Sodium transport in plant cells.Biochim Biophys Acta Biom, 1465: 140-151.
[6] Bresson J, Vasseur F, Dauzat M, Koch G, Granier C, Vile D.2015. Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress.Plant Methods, 11(1): 23.
[7] Cha-um S, Trakulyingcharoen T, Smitamana P, Kirdmanee C.2009. Salt tolerance in two rice cultivars differing salt tolerant abilities in responses to iso-osmotic stress.Aust J Crop Sci, 3: 221-230.
[8] Chen H, An R, Tang J H, Cui X H, Hao F S, Chen J, Wang X C.2007. Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice.Mol Breeding, 19: 215-225.
[9] Chen M X, Cao L, Song X Z, Wang X Y, Qian Q P, Liu W.2014. Effect of iron plaque and selenium on cadmium uptake and translocation in rice seedlings (Oryza sativa) grown in solution culture.Int J Agric Biol, 16(6): 1159-1164.
[10] Chowdhury M A M, Moseki B, Bowling D J F.1995. A method for screening rice plants for salt tolerance.Plant Soil, 171: 317-322.
[11] da Silva F G, Shen Y W, Dardick C, Burdman S, Yadav R C, de Leon A L, Ronald C.2004. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21- mediated innate immune response.Mol Plant Microbe Interact, 17: 593-601.
[12] Davatgar N, Neishabouri M R, Sepaskhah A R, Soltani A.2009. Physiological and morphological responses of rice (Oryza sativa L.) to varying water stress management strategies.Int J Plant Prod, 3: 19-32.
[13] Delfine S, Alvino A, Zacchini M, Loreto F.1998. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves.Funct Plant Biol, 25(3): 395-402.
[14] Dhashnamurthi V, Chenniappan V.2013. ABA induced changes in pigment contents, photosynthetic gas exchange characteristics, leaf area and dry matter accumulation of three important pulses.Int J Agric Sci Technol, 1: 1-8.
[15] Dionisio-Sese M L, Tobita S.2000. Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance.J Plant Physiol, 157(1): 54-58.
[16] Djanaguiraman M, Ramadass R.2004. Effect of salinity on chlorophyll content of rice genotypes.Agric Sci Dig, 24: 178-181.
[17] Faiyue B.2011. Bypass Flow and Sodium Transport in Rice (Oryza sativa L.). Brighton, United Kingdom: University of Sussex.
[18] Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y.2004. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice.Plant Cell Physiol, 45: 146-159.
[19] Gregorio G B, Senadhira D, Mendoza R D.1997. Screening rice for salinity tolerance. In: International Rice Research Institute Discussion Paper Series. Manila, the Philippines: International Rice Research Institute: 22: 1-29.
[20] Hakim M A, Juraimi A S, Hanafi M M, Ismail M R, Rafii M Y, Islam M M, Selamat A.2014. The effect of salinity on growth, ion accumulation and yield of rice varieties. J Anim Plant Sci, 24(3): 874-885.
[21] Haq T U, Akhtar J, Steele K A, Munns R, Gorham J.2014. Reliability of ion accumulation and growth components for selecting salt tolerant lines in large populations of rice.Funct Plant Biol, 41(4): 379-390.
[22] Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I.2011. Genetic manipulation of japonica rice using the OsBADH1 gene from indica rice to improve salinity tolerance.Plant Cell Tiss Org, 104: 79-89.
[23] Islam S T, Seraj Z I.2009. Vacuolar Na+/H+ antiporter expression and salt tolerance conferred by actin1D and CaMV35S are similar in transgenic Binnatoa rice.Plant Tiss Cult Biot, 19: 257-262.
[24] Islam S M, Tammi RS, Malo R, Amin M, Rahman M S, Elias S M, Seraj Z I.2009. Constitutive expression of OsNHX1 under the promoter Actin1D can improve the salt tolerance and yield characteristics of Bangladeshi rice Binnatoa.Aust J Crop Sci, 3: 329-335.
[25] Jamil M, Shafiq R, Rha E S.2014. Response of growth, PSII photochemistry, and chlorophyll content to salt stress in four brassica species.Life Sci J, 11(3): 139-145.
[26] Khan M, Panda S.2008. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress.Acta Physiol Plant, 30: 81-89.
[27] Liu S P, Zheng L Q, Xue Y H, Zhang Q, Wang L, Shou H X.2010. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice.J Plant Biol, 53: 444-452.
[28] Maxwell K, Johnson G N.2000. Chlorophyll fluorescence: A practical guide.J Exp Bot, 51: 659-668.
[29] Moradi F, Ismail A M.2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice.Ann Bot London, 99(6): 1161-1173.
[30] Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M J, Kim Y K, Nahm B H, Kim J K.2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth.Plant Physiol, 138: 341-351.
[31] O’Toole J C, De Datta S K.1986. Drought resistance in rainfed lowland rice. In: Progress in Rainfed Lowland Rice. Manila, the Philippines: International Rice Research Institute.
[32] Ozaki H, Le A K, Pham V N, Nguyen V B, Tarao M, Nguyen H C, Takada H.2014. Human factors and tidal influences on water quality of an urban river in Can Tho, a major city of the Mekong Delta, Vietnam.Environ Monit Assess, 186(2): 845-858.
[33] Senguttuvel P, Vijayalakshmi C, Thiyagarajan K, Kannanbapu J R, Kota S, Padmavathi G, Geetha S, Sritharan N, Viraktamath B C.2014. Changes in photosynthesis, chlorophyll fluorescence, gas exchange parameters and osmotic potential to salt stress during early seedling stage in rice (Oryza sativa L.).SABRAO J Breeding Genet, 46(1): 120-135.
[34] Sohn Y G, Lee B H, Kang K Y, Lee J J.2005. Effects of NaCl stress on germination, antioxidant responses, and proline content in two rice cultivars.J Plant Biol, 48: 201-208.
[35] Taiz L, Zeiger E.2002. Plant Physiology, 3rd. Massachusetts, USA: Sinauer Associates Inc Publishers.
[36] Turhan A, Kuscu H, Ozmen N, Sitki Serbeci M, Osman Demir A.2014. Effect of different concentrations of diluted seawater on yield and quality of lettuce.Chil J Agric Res, 74(1): 111-116.
[37] Ueda A, Yahagi H, Fujikawa Y, Nagaoka T, Esaka M, Calcaño M, Saneoka H.2013. Comparative physiological analysis of salinity tolerance in rice.Soil Sci Plant Nutr, 59(6): 896-903.
[38] Voogt W, Blok C, Eveleens B, Marcelis L, Bindraban S.2013. Foliar Fertilizer Application. VFRC Report 2013/2. Virtual Fertilizer Research Centre, Washington DC.
[39] Wang G W, He Y Q, Xu C G, Zhang Q F.2006. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.).Theor Appl Genet, 112(2): 382-387.
[40] Wankhade S D, Cornejo M J, Mateu-Andrés I, Sanz A.2013. Morpho-physiological variations in response to NaCl stress during vegetative and reproductive development of rice.Acta Physiol Plant, 35(2): 323-333.
[41] Xu J W, Lan H X, Fang H M, Huang X, Zhang H S, Huang J.2015. Quantitative proteomic analysis of the rice (Oryza sativa L.) salt response.PLoS One, 10(3): e0120978.
[42] Yu L H, Chen X, Wang Z, Wang S M, Wang Y P, Zhu Q S, Li S G, Xiang C B.2013. Arabidopsis enhanced drought tolerance1/ HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty.Plant Physiol, 162: 1378-1391.
[43] Yunos R.2010. Cultivating rice bowls to achieve total self-sufficiency.J Gen Int Med, 29: 1-545.
[44] Zhao F Y, Guo S L, Zhang H, Zhao Y X.2006a. Expression of yeast SOD2 in transgenic rice results in increased salt tolerance.Plant Sci, 170: 216-224.
[45] Zhao F Y, Wang Z, Zhang Q, Zhao Y X, Zhang H.2006b. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa.J Plant Res, 119: 95-104.
[46] Zheng L, Shannon M C, Lesch S M.2001. Timing of salinity stress affecting rice growth and yield components.Agric Water Manag, 48: 191-206.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: